If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=249
We move all terms to the left:
b^2-(249)=0
a = 1; b = 0; c = -249;
Δ = b2-4ac
Δ = 02-4·1·(-249)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{249}}{2*1}=\frac{0-2\sqrt{249}}{2} =-\frac{2\sqrt{249}}{2} =-\sqrt{249} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{249}}{2*1}=\frac{0+2\sqrt{249}}{2} =\frac{2\sqrt{249}}{2} =\sqrt{249} $
| x+(x)(.25)=67000 | | 12x=22x=1/5 | | d=80+75 | | 2(p-2)=-1-(3-2p) | | 4/x=18/45 | | 2x+10x-4=20, | | 3^(2x+11)=27^x-5 | | 110=x+78 | | 2x+10=2(-3x-3) | | -7/17=x/17 | | -2n+10=1-3n | | 136=-11n-10(n-1) | | x+25/x=67000 | | 3/5x+1/5=7/20x-4 | | 9x=117=12 | | 12(2x+2x)=212 | | 12y+5=8y+2 | | 12y+2=4y+8 | | 9=-7m=+1-6 | | -11=-2+x/2 | | 12y+2=8y+8 | | 12y+2=8y+4 | | 12y+2=8y+2 | | 6(5r+11)=216 | | 6y-3=4y+8 | | 12y-13=4y+8 | | 16y+13=4y+8 | | 16y-13=4y+8 | | 6(4n+2)=300 | | 21=x/9+2 | | -y/8=-28 | | 7(n-3)-2(2n+)=4 |